Pseudocompact inverse primitive (semi)topological semigroups

Oleg Gutik

National University of Lviv, Ukraine

January 29, 2014 Winter School in Abstract Analysis. Section Set Theory & Topology, 25th January — 1st February 2014, Hejnice, Chech Republic

The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\overline{f}: \beta X \to Y$, i.e., the following diagram commutes

Every continuous map $f: X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f: \beta X \to \beta Y$:

The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\overline{f}: \beta X \to Y$, i.e., the following diagram commutes

Every continuous map $f: X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f: \beta X \to \beta Y$:

The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\overline{f}: \beta X \to Y$, i.e., the following diagram commutes

Every continuous map $f: X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f: \beta X \to \beta Y$:

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups

The Čech-Stone compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \to Y$ to a compact Hausdorff space Y extends to a continuous map $\overline{f}: \beta X \to Y$, i.e., the following diagram commutes

Every continuous map $f: X \to Y$ of Tychonoff spaces X and Y extends to the unique continuous map $\beta f: \beta X \to \beta Y$:

Oleg Gutik

Pseudocompact inverse primitive (semi)topological semigroups

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f: X \times Y \to Z$ extends to a continuous map $\overline{f}: \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called pseudocompact if every continuous map $f\colon X\to\mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f \colon X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f} \colon \beta X \times \beta Y \to \beta Z$.

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f: X \times Y \to Z$ extends to a continuous map $\overline{f}: \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called pseudocompact if every continuous map $f\colon X\to \mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f: X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f}: \beta X \times \beta Y \to \beta Z$.

The Glicksberg Theorem, 1959

For Tychonoff topological spaces X, Y and Z a continuous map $f: X \times Y \to Z$ extends to a continuous map $\overline{f}: \beta X \times \beta Y \to \beta Z$ if and only if the product $X \times Y$ is pseudocompact.

A Tychonoff topological spaces X is called pseudocompact if every continuous map $f: X \to \mathbb{R}$ is bounded.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces and continuous map $f \colon X \times Y \to Z$ be a continuous map. If X are Y pseudocompact then f extends to a separately continuous map $\overline{f} \colon \beta X \times \beta Y \to \beta Z$.

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a Grothendieck pair if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangel'skii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a Grothendieck pair if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangel'skii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a Grothendieck pair if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangel'skii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.

Let X and Y are Tychonoff topological spaces. We shall say that (X, Y) is a Grothendieck pair if every continuous image of X in $C_p(Y)$ has the compact closure in $C_p(Y)$.

Arkhangel'skii, 1984

If (X, Y) is a Grothendieck pair then X is pseudocompact.

Reznichenko, 1994

Let X and Y be Tychonoff pseudocompact spaces. Then (X, Y) is a Grothendieck pair if and only if (Y, X) is a Grothendieck pair.

Reznichenko, 1994

If a Tychonoff pseudocompact space X satisfies one of the following conditions: (i) X is countably compact; (ii) X has countable tightness; (iii) X is separable; (iv) X is a k-space, then (X, Y) is a Grothendieck pair for every Tychonoff pseudocompact space Y.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X, Y) is a Grothendieck pair. Then every separately continuous map $f: X \times Y \to Z$ can be extended to a separately continuous map $\beta f: \beta X \times \beta Y \to \beta Z$.

Reznichenko, 1994

Let X, Y and Z be Tychonoff Pseudocompact topological spaces. Then every continuous map $f \colon X \times Y \to Z$ can be extended to a separately continuous map $\beta f \colon \beta X \times \beta Y \to \beta Z$.

Reznichenko, 1994

Let X, Y and Z be Tychonoff topological spaces such that (X, Y) is a Grothendieck pair. Then every separately continuous map $f: X \times Y \to Z$ can be extended to a separately continuous map $\beta f: \beta X \times \beta Y \to \beta Z$.

Reznichenko, 1994

Let X, Y and Z be Tychonoff Pseudocompact topological spaces. Then every continuous map $f \colon X \times Y \to Z$ can be extended to a separately continuous map $\beta f \colon \beta X \times \beta Y \to \beta Z$.

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological* group;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological* group;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological* group;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological* group;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

- equipped with a continuous group operation and continuous inversion is called a *topological group*;
- equipped with a continuous group operation is called a *paratopological* group;
- equipped with a separately continuous group operation and continuous inversion is called a *quasitopological group*;
- equipped with a separately continuous group operation is called a *semitopological group*.

A semigroup S

- is called *inverse* if for every $x \in S$ there exists unique $y \in S$ such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $x \in S \to S$: $x \to x$ is called inversion);
- is a semilattice if it is a commutative semigroup of idempotents;
- is simple if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from {0};
- is completely simple if S is simple and contains minimal left and right ideals;
- is completely 0-simple if S is 0-simple and contains minimal left and right ideals distinct from {0}.

- is called *inverse* if for every $x \in S$ there exists unique $y \in S$ such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x^{-1} (for an inverse semigroup S the map $\iota \colon S \to S \colon x \mapsto x^{-1}$ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is **0**-simple if S does not contains no proper ideals distinct from {0};
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is completely 0-simple if S is 0-simple and contains minimal left and right ideals distinct from $\{0\}$.

A semigroup S

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from {0};
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

A semigroup S

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from {0};
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from {0};
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from $\{0\}$;
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from $\{0\}$;
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

- is called *inverse* if for every x ∈ S there exists unique y ∈ S such that xyx = x and yxy = y, and in this case y is called inverse of x in S and denoted by x⁻¹ (for an inverse semigroup S the map ι: S → S: x ↦ x⁻¹ is called *inversion*);
- is a *semilattice* if it is a commutative semigroup of idempotents;
- is *simple* if S does not contain proper ideals;
- is 0-simple if S does not contains no proper ideals distinct from $\{0\}$;
- is *completely simple* if S is simple and contains minimal left and right ideals;
- is *completely* 0-*simple* if S is 0-simple and contains minimal left and right ideals distinct from {0}.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is *primitive* if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is *primitive* if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a topological inverse semigroup;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
- equipped with a continuous semigroup operation is called a *topological* semigroup;
- with separately a continuous semigroup operation is called a *semitopological semigroup*.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

 equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;

 equipped with a continuous semigroup operation is called a *topological* semigroup;

 with separately a continuous semigroup operation is called a semitopological semigroup.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is primitive if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a semitopological semigroup.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is *primitive* if it minimal in $E(S) \setminus \{0\}$.

A topological space S

- equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
- equipped with a continuous semigroup operation is called a topological semigroup;
- with separately a continuous semigroup operation is called a *semitopological semigroup*.

 $e \leqslant f$ if and only if ef = fe = e, $e, f \in E(S)$.

An idempotent e of a semigroup S is *primitive* if it minimal in $E(S) \setminus \{0\}$.

- A topological space S
 - equipped with a continuous semigroup operation and continuous inversion is called a *topological inverse semigroup*;
 - equipped with a continuous semigroup operation is called a topological semigroup;
 - with separately a continuous semigroup operation is called a *semitopological semigroup*.

Let \mathscr{C} be a class of compact Hausdorff semitopological semigroups. By a \mathscr{C} -compactification of a semitopological semigroup S we understand a pair $(\mathscr{C}(S),\eta)$ consisting of a compact semitopological semigroup $\mathscr{C}(S) \in \mathscr{C}$ and a continuous homomorphism $\eta: S \to \mathscr{C}(S)$ (called the canonic homomorphism) such that for each continuous homomorphism $h: S \to K$ to a semitopological semigroup $K \in \mathscr{C}$ there is a unique continuous homomorphism $\bar{h}: \mathscr{C}(S) \to K$ such that $h = \bar{h} \circ \eta$.

We shall be interested in \mathscr{C} -compactifications for the following classes of semigroups:

- *WAP* of compact semitopological semigroups;
- *AP* of compact topological semigroups.

The corresponding C-compactifications of a semitopological semigroup S will be denoted by $\mathscr{WAP}(S)$ and $\mathscr{AP}(S)$. The notation came from the abbreviations for weakly almost periodic, almost periodic, and strongly almost periodic function rings that determine those compactifications.

Let \mathscr{C} be a class of compact Hausdorff semitopological semigroups. By a \mathscr{C} -compactification of a semitopological semigroup S we understand a pair $(\mathscr{C}(S),\eta)$ consisting of a compact semitopological semigroup $\mathscr{C}(S) \in \mathscr{C}$ and a continuous homomorphism $\eta: S \to \mathscr{C}(S)$ (called the *canonic homomorphism*) such that for each continuous homomorphism $h: S \to K$ to a semitopological semigroup $K \in \mathscr{C}$ there is a unique continuous homomorphism $\bar{h}: \mathscr{C}(S) \to K$ such that $h = \bar{h} \circ \eta$.

We shall be interested in $\mathscr C\text{-}compactifications for the following classes of semigroups:$

- *WAP* of compact semitopological semigroups;
- AP of compact topological semigroups.

The corresponding C-compactifications of a semitopological semigroup S will be denoted by $\mathscr{WAP}(S)$ and $\mathscr{AP}(S)$. The notation came from the abbreviations for weakly almost periodic, almost periodic, and strongly almost periodic function rings that determine those compactifications.

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS , which implies that βS coincides with the \mathscr{AP} -compactification of S.

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS , which implies that βS coincides with the \mathscr{AP} -compactification of S.

Reznichenko, 1995

For any Tychonoff countably compact semitopological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation on βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Reznichenko, 1995

For any Tychonoff pseudocompact topological semigroup S the semigroup operation of S extends to a separately continuous semigroup operation βS , which implies that βS coincides with the \mathcal{WAP} -compactification of S.

Banakh, Dimitrova, 2010

For any Tychonoff topological semigroup S with pseudocompact square $S \times S$ the semigroup operation of S extends to a continuous semigroup operation on βS , which implies that βS coincides with the \mathscr{AP} -compactification of S.

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G \times H$ is not pseudocompact.

The Tychonoff product of any non-empty family of pseudocompact topological groups is a pseudocompact space.

Comfort & Ross, 1966

The Čech-Stone compactification βG of a pseudocompact topological group is a topological group and the group operation of βG is an extension of the group operation of G.

Korovin, 1992

There exists a Tychonoff pseudocompact semitopological group which is not a paratopological group.

Hernandes & Tkachenko, 2006

There exist two Tychonoff pseudocompact quasitopological groups G and H such that the product $G\times H$ is not pseudocompact.

Theorem

For a Tychonoff space X the following conditions are equivalent:

- (i) X is pseudocompact;
- (ii) every locally finite family of non-empty open subsets of X is finite;
- (iii) every locally finite open cover of X has a finite subcover.

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i : i \in \mathscr{J}\}\$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i : i \in \mathscr{J}\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i \colon i \in \mathscr{J}\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

The Tychonoff product of any non-empty family of pseudocompact paratopological groups is a pseudocompact space.

G & Repovš, 2007

Let S be a 0-simple countable compact topological inverse semigroup. Then the Stone-Čech compactification of S admits a structure of 0-simple topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Pavlyk, 2013

Let $\{S_i \colon i \in \mathscr{J}\}$ be a non-empty family of primitive Hausdorff pseudocompact topological inverse semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact topological inverse semigroup.

G & Pavlyk, 2013

Clifford, 1951

Let S be a group and λ be a cardinal ≥ 1 . On the set $B_{\lambda}(S) = (\lambda \times S \times \lambda) \sqcup \{0\}$ we define the semigroup operation as follows

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{ if } \beta = \gamma; \\ 0, & \text{ if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$. The semigroup $B_{\lambda}(S)$ is called the *Brandt semigroup*. Every completely 0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal λ and group S.

For all $\alpha, \beta \in \lambda$ we denote $S_{\alpha,\beta} = \{(\alpha, s, \beta) \colon s \in S\}.$

Clifford, 1951

Let S be a group and λ be a cardinal ≥ 1 . On the set $B_{\lambda}(S) = (\lambda \times S \times \lambda) \sqcup \{0\}$ we define the semigroup operation as follows

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{ if } \beta = \gamma; \\ 0, & \text{ if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in \lambda$ and $a, b \in S$. The semigroup $B_{\lambda}(S)$ is called the *Brandt semigroup*. Every completely 0-simple inverse semigroup is isomorphic to Brandt semigroup for some cardinal λ and group S.

For all $\alpha, \beta \in \lambda$ we denote $S_{\alpha,\beta} = \{(\alpha, s, \beta) : s \in S\}.$

Let $\{S_{\iota}: \iota \in \mathscr{I}\}$ be a disjoint family of semigroups with zero such that 0_{ι} is zero in S_{ι} for any $\iota \in \mathscr{I}$. We put $S = \{0\} \cup \bigcup \{S_{\iota} \setminus \{0_{\iota}\}: \iota \in \mathscr{I}\}$, where $0 \notin \bigcup \{S_{\iota} \setminus \{0_{\iota}\}: \iota \in \mathscr{I}\}$, and define a semigroup operation on S in the following way

$$s \cdot t = \begin{cases} st, & \text{if } st \in S_{\iota} \setminus \{0_{\iota}\} \text{ for some } \iota \in \mathscr{I}; \\ 0, & \text{otherwise.} \end{cases}$$

The semigroup S with such defined operation is called the *orthogonal sum* of of the family of semigroups $\{S_{\iota} \colon \iota \in \mathscr{I}\}$ and in this case we shall write $S = \sum_{\iota \in \mathscr{I}} S_{\iota}.$

Petrich, 1984

A semigroup S is a primitive inverse semigroup if and only if S is the orthogonal sum of a non-empty family of Brandt semigroups.

Let $\{S_{\iota}: \iota \in \mathscr{I}\}$ be a disjoint family of semigroups with zero such that 0_{ι} is zero in S_{ι} for any $\iota \in \mathscr{I}$. We put $S = \{0\} \cup \bigcup \{S_{\iota} \setminus \{0_{\iota}\}: \iota \in \mathscr{I}\}$, where $0 \notin \bigcup \{S_{\iota} \setminus \{0_{\iota}\}: \iota \in \mathscr{I}\}$, and define a semigroup operation on S in the following way

$$s \cdot t = \begin{cases} st, & \text{if } st \in S_{\iota} \setminus \{0_{\iota}\} \text{ for some } \iota \in \mathscr{I}; \\ 0, & \text{otherwise.} \end{cases}$$

The semigroup S with such defined operation is called the *orthogonal sum* of of the family of semigroups $\{S_{\iota} \colon \iota \in \mathscr{I}\}$ and in this case we shall write $S = \sum_{\iota \in \mathscr{I}} S_{\iota}.$

Petrich, 1984

A semigroup S is a primitive inverse semigroup if and only if S is the orthogonal sum of a non-empty family of Brandt semigroups.

Let S be a Hausdorff primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i): i \in \mathscr{I}\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in \mathscr{I}$ there exists a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

- (1) the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
- (2) $(G_i)_{\alpha_i,\alpha_i}$ is a pseudocompact paratopological group;
- (3) the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω -precompact pseudocompact;

(4) the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then ${\cal S}$ admits the unique topology which turns ${\cal S}$ into a semitopological semigroup.

We recall that a group G endowed with a topology is left (ω -)precompact, if for each neighborhood U of the unit of G there exists a (countable) finite subset F of G such that FU = G.

Let S be a semiregular primitive inverse pseudocompact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i): i \in \mathscr{I}\}$ of semitopological Brandt semigroups with zeros. Let for every $i \in \mathscr{I}$ there exists a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

- (1) the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
- (2) $(G_i)_{\alpha_i,\alpha_i}$ is a pseudocompact paratopological group;
- (3) the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω -precompact pseudocompact;

(4) the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then S admits the unique topology which turns S into a semitopological semigroup.

Let S be a Hausdorff primitive inverse pseudocompact topological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i)\colon i\in\mathscr{I}\}$ of topological Brandt semigroups with zeros. Then the following assertions hold:

- (i) every cardinal λ_i is finite;
- $(ii) \,$ every maximal subgroup of S is open-and-closed subset of S and hence is pseudocompact;
- (*iii*) for every $i \in \mathscr{I}$ the maximal Brandt semigroup $B_{\lambda_i}(G_i)$ is a pseudocompact;
- (iv) if $\mathscr{B}_{(\alpha_i,e_i,\alpha_i)}$ is a base of the topology at the unity (α_i,e_i,α_i) of a maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$ of $S, i \in \mathscr{I}$, such that $U \subseteq (G_i)_{\alpha_i,\alpha_i}$ for any $U \in \mathscr{B}_{(\alpha_i,e_i,\alpha_i)}$, then the family

$$\mathscr{B}_{(\beta_i, x, \gamma_i)} = \left\{ (\beta_i, x, \alpha_i) \cdot U \cdot (\alpha_i, e_i, \gamma_i) \colon U \in \mathscr{B}_{(\alpha_i, e_i, \alpha_i)} \right\}$$

is a base of the topology at the point $(\beta_i, x, \gamma_i) \in (G_i)_{\beta_i, \gamma_i} \subseteq B_{\lambda_i}(G_i)$, for all $\beta_i, \gamma_i \in \lambda_i$;

if in addition the topological space \boldsymbol{S} is semiregular then

(v) the family

$$\begin{split} \mathscr{B}_0 &= \left\{ S \backslash \left((G_{i_1})_{\alpha_{i_1},\beta_{i_1}} \cup \dots \cup (G_{i_k})_{\alpha_{i_k},\beta_{i_k}} \right) \colon i_1, \dots, i_k \in \mathscr{I}, \alpha_{i_k}, \beta_{i_k} \in \lambda_{i_k}, \\ & k \in \mathbb{N}, \{ (\alpha_{i_1},\beta_{i_1}), \dots, (\alpha_{i_k},\beta_{i_k}) \} \text{ is finite} \right\} \end{split}$$

is a base of the topology at zero of ${\cal S}$

Let $\{S_j: j \in \mathscr{J}\}\$ be a non-empty family of primitive semitopological inverse semigroups such that for each $j \in \mathscr{J}$ the semigroup S_j is either semiregular pseudocompact or Hausdorff countably compact, and moreover each maximal subgroup of S_j a pseudocompact paratopological group. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact semitopological inverse semigroup.

G & Ravsky, 2013

Let $\{S_i : i \in \mathscr{J}\}\$ be a non-empty family of primitive inverse semiregular pseudocompact (Hausdorff countably) topological semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact inverse topological semigroup.

Let $\{S_j: j \in \mathscr{J}\}\$ be a non-empty family of primitive semitopological inverse semigroups such that for each $j \in \mathscr{J}$ the semigroup S_j is either semiregular pseudocompact or Hausdorff countably compact, and moreover each maximal subgroup of S_j a pseudocompact paratopological group. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact semitopological inverse semigroup.

G & Ravsky, 2013

Let $\{S_i \colon i \in \mathscr{J}\}$ be a non-empty family of primitive inverse semiregular pseudocompact (Hausdorff countably) topological semigroups. Then the direct product $\prod_{j \in \mathscr{J}} S_j$ with the Tychonoff topology is a pseudocompact inverse topological semigroup.

Let S be a primitive inverse pseudocompact quasi-regular topological semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Ravsky, 2013

Let S be a regular primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i): i \in \mathscr{I}\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in \mathscr{I}$ there exists s maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}, \alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

- (1) the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
- (2) the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω -precompact pseudocompact;

(3) the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then the Stone-Čech compactification of S admits a structure of primitive inverse semitopological semigroup with continuous inversion with respect to which the inclusion mapping of S into βS is a topological isomorphism.

Let S be a primitive inverse pseudocompact quasi-regular topological semigroup. Then the Stone-Čech compactification of S admits a structure of primitive topological inverse semigroup with respect to which the inclusion mapping of S into βS is a topological isomorphism.

G & Ravsky, 2013

Let S be a regular primitive inverse countably compact semitopological semigroup and S be an orthogonal sum of the family $\{B_{\lambda_i}(G_i): i \in \mathscr{I}\}$ of semitopological Brandt semigroups with zeros. Suppose that for every $i \in \mathscr{I}$ there exists s maximal non-zero subgroup $(G_i)_{\alpha_i,\alpha_i}$, $\alpha_i \in \lambda_i$, such that at least the one of the following conditions holds:

- (1) the group $(G_i)_{\alpha_i,\alpha_i}$ is left precompact;
- (2) the group $(G_i)_{\alpha_i,\alpha_i}$ is left ω -precompact pseudocompact;

(3) the subsemigroup $S_{\alpha_i,\alpha_i} = (G_i)_{\alpha_i,\alpha_i} \cup \{0\}$ is a topological semigroup.

Then the Stone-Čech compactification of S admits a structure of primitive inverse semitopological semigroup with continuous inversion with respect to which the inclusion mapping of S into βS is a topological isomorphism.

Thank You for Your attention!